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Measurements of the Thermal Conductivity
and Thermal Diffusivity of Liquids. Part II:
“Convective and Radiative Effects”1

B. Remy2,3 and A. Degiovanni2

The second part (Part II) of this work is concerned with coupling in the
transient regime of conduction with convection and radiation in the experi-
mental bench developed and presented in Part I for the measurement of the
thermal conductivity and thermal diffusivity of fluids by an impulse tech-
nique. The first section will analyze heat transfer in the liquid by conduc-
tion and convection. This will help to define the optimal extension of the
measuring cell to reduce the influence of natural convection for the case of
impulse heat flux stimulation. The second section is about coupled conduc-
tive–radiative heat transfer and will show how to deal with radiative effects
in the problem of parameters estimation.

KEY WORDS: convection; coupled heat transfers; fluids; radiation; transient
technique.

1. INTRODUCTION

The aim of this work is to implement an experimental bench for measure-
ment of the thermal diffusivity and conductivity of liquids by a transient
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impulse technique. The measurement of the thermal conductivity of flu-
ids is particularly difficult due to the presence of several coupled modes
of heat transfer: conduction, convection and radiation, disturbed by the
presence of solid boundaries that also take part in heat exchange. The
first part of this work (Part I) allowed us — by a sensitivity study of the
theoretical model and validation by experiments — to optimize, assum-
ing purely conductive transfer, the parameters estimation procedure and to
precisely define the main characteristics of the walls (thickness and ther-
mophysical properties) to perform such a measurement. The aim of this
second part (Part II) consists of studying the effects of convection and
radiation in the transient regime. Some details will be given about end
effects and conduction through the measuring cell walls.

2. CONVECTIVE HEAT TRANSFER

The vertical cylindrical geometry chosen for the measurement does
not totally eliminate convection effects. To perform a good measurement,
it is thus necessary to work in a regime called a “pseudo-conduction”
regime, in which convection has no affect on heat transfer by conduction
in the thickness of the fluid.

This regime can be obtained if the height to thickness ratio (L/e)

or extension of the cell is sufficiently large to uncouple conductive and
convective heat transfer. The question is to know how a cell with a large
enough extension, as indicated by a parameter that can serve as an effi-
cient criterion, can help with this task.

For the case of a cell with an infinite extension, we can show that
speed and temperature fields are theoretically uncoupled but, in practice,
the cell extension always maintains a finite value.

Thus, the case of a cell with a finite extension should be investigated.
This study will be carried out with numerical codes that will be first vali-
dated using benchmark results in well-known configurations in the litera-
ture before it is used in the transient regime for closed squares and large
cavities with natural convection subjected either to a temperature step or
to a heat impulse stimulation.

2.1. Analytical One-Dimensional (1D) Approach

At first, we are interested in free convection flow between two infinite
slabs subjected to thermally uniform boundary conditions (see Fig. 1). We
usually make the Boussinesq assumption. The fluid is considered to be vis-
cous and incompressible.
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Fig. 1. Cell with an infinite extension.

The corresponding governing equations are:

• Mass conservation:
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• Energy conservation:

ρC

(
∂T

∂t
+u

∂T

∂x
+v

∂T

∂y

)
=λ

(
∂2T

∂x2
+ ∂2T

∂y2

)
. (4)

The cell being of an infinite extension and assuming boundary conditions
as uniform, the flow is thus established in the y-direction, that is, ∂

∂y
= 0.

The conservation equation is reduced to

∂u

∂x
=0. (5)
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Moreover, as ∂u
∂y

=0, and assuming the adherence of fluid on walls (u=0),
the heat equation becomes

ρC
∂T

∂t
=λ

∂2T

∂x2
. (6)

We find the commonly 1D and purely conductive heat transfer transient
equation. This is what we call the “pseudo-conduction” regime. It remains
to define a criterion for knowing which value of the cell extension will
allow us to obtain this regime.

2.2. Numerical 2D Approach in Steady-State Regime

Before dealing with the transient problem, it is necessary, on the one
hand, to validate the numerical code we used (Fluent in our case) and, on
the other hand, to define a critical Rayleigh number that will allow us to
know if we are considered to be in a pseudo-conduction regime. For that,
we can refer to several references [1–9] concerning the classical benchmark
problem in the steady-state regime of a square cavity heated differentially.
The problem can be represented as shown in Fig. 2.

The gravity field g is vertical and downward and the Boussinesq
approximation is assumed, that is, the density is independent of the tem-
perature, except in the momentum equation;

Fig. 2. Square cavity in steady-state regime.
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ρ =ρm [1−β (T −Tm)] . (7)

The resulting system is the same as the previous one, setting ∂
∂t

= 0
(steady-state regime).

Introducing the following reduced quantities:

x∗ = x

Lx

, y∗ = y

Ly

, u∗ = uLx

a
, v∗ = vLx

a
, (8)
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x
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a
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the equations become
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with the following boundary conditions:

in x∗ =0
{

T ∗ =0
u∗ =v∗ =0 (adherence to the wall) (14)

in x∗ =1
{

T ∗ =1
u∗ =v∗ =0 (adherence to the wall) (15)

in y∗ =0
{

∂T ∗
∂n

=0 (null flux to the wall)
u∗ =v∗ =0 (adherence to the wall)

(16)

in y∗ =1
{

∂T ∗
∂n

=0 (null flux to the wall)
u∗ =v∗ =0 (adherence to the wall).

(17)
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The fluid is assumed to be viscous and incompressible. Let us consider a
4- mm ×4-mm square cell subjected to a temperature difference �T of 10 K
with a cold temperature of 300 K and a pressure of 101 325 Pa (atmo-
spheric pressure). (In the next discussion, Ly is increasing by keeping Lx

constant). Table I gives the properties for water and oil (Grashoff and
Rayleigh numbers are defined, as usual, with respect to the characteristic
length Lx);

Ra = gβ�T L3
x

νa
=GrPr. (18)

We note that for the same geometry and the same temperature differ-
ence, the Rayleigh number strongly varies according to the fluid. The
worst case corresponds to water.

2.2.1. Validation of the Numerical Code

We use the commercial computational fluid dynamics (CFD) code
Fluent with a boundary layer type mesh near the boundaries and com-
posed of 80 × 80 cells. The first validations consist of variations of the
number of cells and comparisons of the speed profiles symmetry and
energy balance between the inlet and outlet of the system. The last check
consists of comparisons between the Nusselt numbers for the front and
back faces (top and bottom of the cell are insulated).

φ =hLy (T2 −T1)=
∫ Ly

0

(
−λ

∂T

∂x
+ρcuT

)
dy (19)

Table I. Properties for Different Fluids

Water Oil

λ 0.6 0.145 (W·m−1·K−1)
Cl 4182 1880 (J·kg−1·K−1)
µ 0.001 0.8 (kg·m−1·s−1)
ρ 998.2 888 (kg·m−3)
�T 10 10 (K)
β 0.0003 0.0007 (K−1)
Lx 0.004 0.004 (m)
Ly 0.004 0.004 (m)
Pr 6.97 10372 –
Gr 1876 0.00541 –
Ra 13080 56.17 –
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By definition,
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λ
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. (20)
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In reduced quantities:

Nu=
∫ 1

0

(
−∂T ∗

∂x∗ +u∗T ∗ +u∗ T1

T2 −T1

)
dy∗. (22)

At the boundaries where u∗ = 0, the preceding expression is reduced
to

Nu=
∫ 1

0
−∂T ∗

∂x∗ dy∗. (23)

Table II gives a comparison of the Nu number between the front and
back faces. To complete this validation, our results have also been com-
pared with those obtained in a benchmark and especially with the results
given by de Walh Davis [1] and Wan et al. [3]. The comparison is car-
ried out with horizontal and vertical maximum speeds and with Nusselt
numbers (the Prandtl number is fixed at 0.7). Tables III–V show that our
results are consistent.

2.2.2. Results for a Square Cavity

The curves given in Fig. 3 show the results obtained by simulations
and those given by correlations [4] for a square cavity. Note the cross dots
(our results obtained by Fluent) and circle dots (results obtained in our
laboratory by a Galerkine type integral method). In logarithmic space, the
asymptotic convection regime results in a linear variation of the Nusselt
number with the Rayleigh number. As the Rayleigh number decreases to
zero, the Nusselt number is going to unity (purely conductive transfer).

Table II. Comparison of Nu Numbers Between the Front and Back Faces

Ra Nu(Front face) Nu(Back face) Difference Nu(First cell) Nu(Third cell) Difference

103 1.1353 1.1293 0.53% 1.1358 1.1353 0.04%
104 2.2547 2.2540 0.03% 2.2552 2.2547 0.02%
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Table III. Comparison of Horizontal Maximum Speeds for x∗ =0.5

Difference Difference
Difference between between

de Wahl Wan et al. between [1] Fluent and Fluent and
Ra Davis [1] [3] and [3] Fluent [1] [3]

103 3.634 3.6434 0.26% 3.6106 −0.64% −0.90%
(0.813) (0.8167) (0.8158)

104 16.2 15.967 −1.44% 16.4088 1.23% 2.71%
(0.823) (0.8167) (0.8158)

105 34.81 33.51 −3.73% 36.737 5.54% 9.63%
(0.851) (0.85) (0.8406)

Table IV. Comparison of Vertical Maximum Speeds for y∗ =0.5

Difference Difference
Difference between between

de Wahl Wan et al. between [1] Fluent and Fluent and
Ra Davis [1] [3] and [3] Fluent [1] [3]

103 3.679 3.686 0.19% 3.6443 −0.94% −1.13%
(0.179) (0.188) (0.1858)

104 19.51 19.98 2.35% 19.8609 1.80% −0.60%
(0.12) (0.117) (0.1233)

105 68.22 70.81 3.80% 74.2511 9.69% 4.26%
(0.066) (0.07) (0.0723)

Table V. Comparison of Nu Numbers

Difference Difference
Difference between between

de Wahl Wan et al. between [1] Fluent and Fluent and
Ra Davis [1] [3] and [3] Fluent [1] [3]

103 1.12 1.073 −4.20% 1.1353 1.37% 5.81%
104 2.243 2.155 −3.92% 2.2547 0.52% 4.63%

The transition Rayleigh number is usually fixed in the literature to 103. If
we define the transition by taking the intercept of the line defined from the
asymptotic convection regime with the value Nu=1, we obtain almost the
same result. However, we observe that the Nusselt number is slightly larger
than unity for this value. This means that the temperature field is already
affected by the velocity field. That is the reason why Batchelor [5] pre-
ferred to set the Rac value to 500. In this study a value of 200 is assumed.
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Fig. 3. Comparisons between the results obtained in this work with other correlations.

2.2.3. Results for a Large Cavity

In this section, the variation of the critical Rayleigh number with the
cell extension is considered [5–9] (see Fig. 4).

For a given Rayleigh number, we notice a decrease of the Nusselt
number for an extension larger than four. Thus, the effect of convection
on heat transfer is reduced for larger cavities (we can note that this varia-
tion is nonuniform and that for a smaller extension, for example, an exten-
sion of two, the Nusselt number is increasing). In Fig. 5, we have plotted
the variation of the critical Rayleigh number with the cell extension. For
a value larger than ten, we find a linear variation for the critical Rayleigh
number that leads to

Rac =200Al (Al >10) (24)

(to be compared with the Batchelor criterion: Rac =500Al).
As the curve Rac =f (Al) is linear, a new definition for the Rayleigh

number valid for extensions can be proposed:

Ra∗ = gβ�T L2
xLy

νa
. (25)
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We obtain

Ra∗
c =200. (26)

(For this correlation, the Prandtl number is equal to 0.7. As the Prandtl
number is increasing with the fluid viscosity, this corresponds to the worst
case.)
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2.3. Natural Convection in Transient Regime

Few studies have been carried out in the transient regime and partic-
ularly in the impulse regime. We can note, for instance, Refs. 10 and 11,
which are interesting in the establishment of speed and temperature fields
in a cavity heated differentially (the temperature of the cavity is assumed
as uniform at the initial time).

However, this kind of problem is far from our experiment. In our
case, the back face is nearly adiabatic while the front face is subjected to a
short heat pulse in time. As �T is a function of time (it is maximum for
smaller times and goes to zero at larger times), the main difficulty is to
know which temperature must be considered for calculating the Rayleigh
number.

The problem is thus to evaluate �Tmax. In our experiment, the adi-
abatic temperature for the fluid is low and is about 1 K, but this is not
the case for the temperature of the metallic wall in the front face that is
increasing very quickly at an initial time. This temperature (Ti) can be cal-
culated from this relation:

Q
/
S =ρcwewTi (27)

The adiabatic temperature is then given by

Q
/
S = (2ρcwew +ρclel) Tl. (28)

Thus,

Ti =
(2ρcwew +ρclel)

ρcwew
Tl (29)

For water with ew =1 mm and el =4 mm, we obtain: Ti �7 K.
Using the critical Rayleigh number defined in Eq. (24), the critical

cell extension for water is given by Alc = 45 (from the Batchelor crite-
rion, Alc =18). In practice, our measuring cell exhibits an extension of 25,
which could be critical for water but large enough for other fluids.

We have now to study the case of a transient regime. For this case a
temperature step that is easier to simulate is first considered and will be
then used for validation of the more realistic case of the impulse heat flux
stimulation.

2.3.1. Cavity Subjected to a Temperature Step

The first case corresponds to a cell insulated on the back face and
subjected to a temperature step on the front face. For this case, the CFD
code (Fluent) allows us to compute the temperature response of the back
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Fig. 6. Rear-face thermograms for different cell extensions.

face up to a Rayleigh number of 16,000 (see Fig. 6). The results show
that it is not possible to obtain purely conductive heat transfer (Pr =7 and
Ra = 16,000) for an extension fewer than 32. In contrast, for a Rayleigh
number of 1600, we can show that an extension of 16 is large enough.

The criterion obtained in the steady-state regime leads to similar
results as those obtained in the transient regime (at first sight, it was not
so obvious), that is, an extension of 80 for a Rayleigh number of 16,000
and 8 for Ra =1600.

2.3.2. Cavity Subjected to Heat-Pulse Stimulation

The case of a Dirac delta function of flux (impulse stimulation) is
not only more realistic but also a more difficult case to solve numerically
because the deposition of energy on the front face occurs in a very short
duration. The temperature within the medium continuously varies with
time to reach a uniform temperature at larger times corresponding to the
adiabatic temperature of the system. The driving term (natural convection)
is larger for the early times and is rapidly disappearing with a decrease of
the temperature difference between the front and back faces.

This problem is difficult to solve with Fluent because it requires very
small time steps at the beginning (approximately �t∗ =10−6). To overcome
this difficulty, we have to use another computational code FlexPde, which
allows us to obtain good results from its in-time and in-space adaptive
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mesh. To validate the use of this code, we proceed to a cross-comparison
between the results given by this code and those given by Fluent for the
previous case of a temperature step stimulation (see Fig. 7).

Then, the back-face response in the middle of the cell and for differ-
ent extensions have been simulated by FlexPDE for the case of a heat-
pulse stimulation.

For this case, the Rayleigh number is defined from the adiabatic tem-
perature of the sample, which is equal to 1000 for the case of water. The
results are shown in Fig. 8. We can observe that for an extension larger
than 16, the thermogram is purely conductive.

2.4. End Effects in the Measuring Cell

As explained in the first part (Part I) of this work in the implemen-
tation of the experimental bench, the measuring cell is composed of two
metallic cylinders separated by an insulating material (Teflon�) to avoid
thermal shorts between the inner and outer cylinders (end effects). The
temperature measurement is performed in the middle of the cell.

An explanation of these technical choices is derived from a numeri-
cal study we performed that takes into account both the coupled conduc-
tion and convection in the fluid and the conduction through the metallic
walls. For the case of insulating walls, we can show that free convection is
emphasized. The in-time response or thermogram goes faster at the top of
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Fig. 7. FlexPDE simulations for the case of a temperature step (�T =10 K).
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Fig. 8. FlexPDE simulations for the case of a heat-pulse stimulation (Dirac function).

the cell and slower at the bottom, while the thermogram measured in the
middle of the cell is as close as possible to the purely conductive thermo-
gram. That is the reason why the temperature is measured at this location
in the experiments. Conversely, conducting materials can be used to limit
convection in decreasing the temperature gradient in the vertical direction
of the cylinders but if discrepancies between thermograms are less, they
are also more sensitive to end effects in this case. So, it clearly appears
that there exists an optimum value for the wall conductivity, which is rep-
resented by stainless steel, which allows us to eliminate the end effects and
the influence of convection.

2.5. Conclusion

We have shown through this numerical study the interest to precisely
model the coupled conductive–convective transfer. If it is easy to show
that conduction is uncoupled with convection for the case of a cell with
an infinite extension, we have shown that, in practice, it is difficult to ful-
fil this condition.

We have also focused on the interest to consider, in the simulations,
some boundary conditions as close as possible to the experiment (impulse
stimulation). Indeed, the criteria proposed in the literature, which are
obtained in most cases in a steady-state regime, can strongly differ from
one author to the other and can lead to differences of a factor larger
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than two in the cell dimensions. This can be mainly explained by the diffi-
culty in determining accurately the transition region between the asymp-
totic pseudo-conduction regime and the asymptotic convection. Another
result is derived from the criteria obtained in the steady-state regime that
cannot be extended to the transitory regime and that also depend on the
boundary conditions of the system (imposed temperatures or Dirac heat
flux). Finally, we have determined that the Rayleigh number cannot be
defined in the same way in steady-state and transient regimes.

The main result is that, for the case of the more constraining liquid
that is water and for the case of the flash method, an extension of 16 is
large enough to result in purely conductive heat transfer.

3. RADIATIVE HEAT TRANSFER

In the preceding part, we were interested in the conduction–convec-
tion coupling. We have shown how it was possible to eliminate convec-
tion by a judicious choice of the cell geometry (large extension) and of the
measurement conditions (small temperature variations). To perform such a
measurement at high temperatures with a similar device, the conduction–
radiation coupling must also be considered but it is not exactly the same
for radiation as for convection. Indeed, even if it is possible to reduce its
effects using some reflecting walls, it cannot be totally removed from heat
transfer. The only possible solution is to develop an adapted model, which
can take into account the coupled conductive–radiative heat transfer.

If the distance between the two inner cylinders is small compared to
their radii, the configuration factors, which are used to evaluate the net
flux exchanged between the inner walls of the measuring cell are exactly
the same as those obtained between two infinite slabs.

In the same way as for conduction and convection, we then can use
the Cartesian coordinates system for solving the radiative transfer equa-
tion (RTE).

The conductive–radiative equations are usually difficult to solve due
to the strong coupling that exists between the heat transfer equation where
the divergence of the radiative flux appears as a source term (Eq. (31))
and the RTE (Eq. (30)) that is a function of the temperature field through
the blackbody emission term. In simple geometrical configurations such as
heat transfer between two parallel and infinite slabs, the problem can be
simplified and solved analytically. We propose here an approximate solu-
tion for this problem that gives quite satisfactory results in most cases. In
other cases, a more sophisticated model can be used [12–14].
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3.1. General Equations

We have two conservative equations, one based on the intensity and
the other on the temperature:

• Radiative transfer equation:

dIν

ds
+ (Kν +σν) Iν =Kνn

2I 0
ν (T )+ σν

4π

∫
4π

P
(
�′ →�

)
Iν

(
�′, s

)
d
′

(30)

with I 0
ν (T ): blackbody intensity in vacuum, Iν: monochromatic intensity

(see Fig. 9), Kν: monochromatic absorption coefficient, σν: monochromatic
scattering coefficient, n: refractive index of the material.

Let us introduce

βν =Kν +σν : monochromatic extinction coefficient

ων =σν

/
βν : “Albedo”

• Energy equation:

ρ c
∂ T

∂ t
=−div ( �ϕc + �ϕr) (31)

with:

�ϕc =−λ
−→

grad (T ) (32)

and

�ϕr =
∫ ∞

0

∫
4π

Iν (�, s) �n.�ud
.dν. (33)

n

dS

θ
∆ d 5Φ¢ν

u

Ωd
dS cos(q )dΩdn

dfn
ν =I

Fig. 9. Definition of the intensity Iν.
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3.2. Simplification of the Problem

The case we consider here can be modelled by an infinite slab with a
thickness e, allowing us to assume

• one-dimensional heat transfer

• azimuthal symmetry

Thus, the intensity is only a function of the variables z and θ (see Fig.
10). Setting µ= cos (θ), RTE becomes

µ

βν

dIν

dz
+ Iν = (1−ων) I 0

ν (T )+ ων

2

+1∫
−1

p
(
µ′ →µ

)
Iν

(
µ′, z

)
dµ′ (34)

with

ϕr (z)=
∫ ∞

0
2π

∫ +1

−1
Iν (z,µ)µdµdν (35)

and the energy equation becomes

∂2T

∂z2
− 1

λ

∂ϕr

∂z
= 1

a

∂T

∂t
. (36)

Fig. 10. Projection of the RTE.
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3.3. Notion of Radiative Conductivity

As the boundaries of a semi-transparent material are opaque, which
is the case here, the conductive–radiative coupling can be modelled by a
simple thermal resistance. The expression for this resistance can differ with
the extinction coefficient of the material (or more precisely with its optical
thickness). For instance, for the case of a highly absorbing material, the
effect of the boundaries can be neglected compared to the absorption phe-
nomena in the material. In this case, the radiative transfer can be viewed
like a pure diffusion process and can be modelled by a simple resistance
Rr = e

/
λr (λr is the radiative conductivity). In the literature, this model

is known as Rosseland’s model. The opposite case corresponds to a low
absorbing medium (thin film). In this case, the radiative heat transfer can
also be represented by a simple resistance but with another expression;
conduction and radiation are uncoupled in the medium but stay linked
through the boundary conditions.

In all cases, the quadrupole model can be set-up very quickly and
keep the same formulation.

Since the total heat flux φ is the sum of the conductive and radiative
fluxes, the conductive–radiative transfer can be modelled by a conductive
quadrupole and a radiative quadrupole in parallel (See Fig. 11). In our
case, the radiative quadrupole is a purely resistive quadrupole:

Mr =
[

Ar =1 Br =Rr = e
/
λr

Cr =0 Dr =1

]
. (37)

The equivalent quadrupole is then given by

M ′ =
[

A
′ = ARr+B

B+Rr
B

′ = BRr
B+Rr

C
′ = CRr+D+A−2

B+Rr
D

′ = B+RrD
B+Rr

]
. (38)

It can be used in a similar way as the purely conductive quadrupole.
Depending on the optical thickness of the material, several authors [15–
19] have proposed different expressions for λr:

• Low optical thickness, τ0 << 1 (grey medium, grey and scattering
boundaries):

λr = 4n2σT
3
e

1
ε1

+ 1
ε2

−1
(39)

• Rosseland’s model, τ0 >>1 (grey medium):

λr = 16
3

n2σ
T

3

β
(40)
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Fig. 11. Conductive–radiative quadrupole model for fluid.

• Poltz-Jugel’s model, τ0 � 1 (grey medium, grey and scattering
boundaries):

λr = 16
3 n2σ T

3

β
Y

with
Y =1− 3

4τ0
(1−4E5 (τ0))− 2

3τ0

(1−(ε1+ε2)/2−2ρ1ρ2E3(τ0))

1−4ρ1ρ2E3(τ0)
2 (1−3E4 (τ0))

2
(41)

(as τ0 →∞, Rosseland’s model is found Y →1, and as τ0 →0, the
thin film model is found)

• Radiative equilibrium model (grey medium, grey and scattering
boundaries):

λr = 4n2σT
3
e

1
ε1

+ 1
ε2

−1+βe
(42)

• Dessler’s model (grey medium, grey and scattering boundaries):

λr = 4n2σT
3
e

1
ε1

+ 1
ε2

−1+ 3
4βe

(43)

• Modified radiative equilibrium model (grey medium, grey and
scattering boundaries):

λr = 4n2σT
3
e

1
ε1

+ 1
ε2

−1+ βe
K

(44)

with K(βe)=4
/

3−0.175 exp (−0.56865βe)−(1/3−0.175
)

exp (−5.6114βe).
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The preceding models are of interest for estimation of the conduc-
tive properties of semi-transparent fluids with low absorption coefficients
at infrared wavelengths or measurements at high temperatures. This can be
done easily through this model in introducing only one additional parame-
ter, the radiative resistance Rr. Figure 12 gives an example of thermograms
we can obtain as a function of the radiative resistance Rr for a case of a
measuring cell with copper walls. We can observe that the effect of this
parameter on the thermogram appears at smaller times, which allows us
to think that this parameter is independent of the thermal diffusivity and
thermal conductivity. Keeping an analytical approach, this radiative model
can be improved by the introduction of two new parameters (the optical
thickness and the Planck number of the semi-transparent material). More
details can be viewed in Refs. 12–14.

4. CONCLUSION

We have shown in this second part (Part II) how we can, by a judi-
cious choice of the measuring cell extension, remove the effects of natural
convection and how it is possible to take into account the radiative effects
in a very simple way for semi-transparent liquids through an additional
parameter, the radiative resistance. Using such a model, an extension to

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Time t,s

∆T
,°

C

R
r
*=1

R
r
*=10

R
r
*=100

R
r
*=∞ (Pure Conduction)

Fluid [ef =4 mm,lf= 0.2 W·m-1·K-1, al = 1× 10-7 m2·s-1,rcl = 2 ×106 J·m-3·K-1 ] 
Walls (Copper) [ew = 1 mm,lw= 395 W·m-1·K-1, aw = 1.15× 10-4 m2·s-1,rcw = 3.43× 106 J·m-3·K-1]

h = 5 W·m-2·K-1, Q/S = 4 × 104 J·m-2

Fig. 12. Thermograms for different values of R∗
r =Rr

/
Rcd

(
Rcd = el

/
λl

)
.
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higher temperatures (up to 500◦C) of the experiment presented in the first
part (Part I) of this work is possible by keeping the same configuration.
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